2019-2024

Updated 4/23/24

* = preprint
+ = thesis/dissertation
# = other

# Andersen, O. S., Nairn, A. C., Palmer, L. G., & Shapley, R. M. (2019). In Memoriam: David C. Gadsby, PhD. Journal of General Physiology, 151(8), 967–969.

* Anisimova, M., van Bommel, B., Mikhaylova, M., Wiegert, J. S., Oertner, T. G., & Gee, C. E. (2021). Spike-timing-dependent plasticity rewards synchrony rather than causality. bioRxiv.

Anisimova, M., van Bommel, B., Wang, R., Mikhaylova, M., Wiegert, J. S., Oertner, T. G., & Gee, C. E. (2023). Spike-timing-dependent plasticity rewards synchrony rather than causality. Cerebral Cortex, 33(1), 23–34.

* Anisimova, M., van Bommel, B., Wiegert, J. S., Mikhaylova, M., Oertner, T., & Gee, C. (2019). Long vs short-term synaptic learning rules after optogenetic spike-timing-dependent plasticity. ResearchGate.

Ardiel, E. L., Lauziere, A., Xu, S., Harvey, B. J., Christensen, R. P., Nurrish, S., Kaplan, J. M., & Shroff, H. (2022). Stereotyped behavioral maturation and rhythmic quiescence in C. elegans embryos. eLife, 11, e76836.

* Ardiel, E. L., Xu, S., Nurrish, S., Lauziere, A., Harvey, B. J., Kaplan, J. M., & Shroff, H. (2022). Stereotyped Behavioral Maturation and Rhythmic Quiescence in C. elegans Embryos (p. 2021.12.09.471955). bioRxiv.

+ Buchanan, J. (2021). Oligodendrocyte Precursor Cells, a Multifunctional Glial Cell in the Mammalian Visual Cortex [Dissertation, Northeastern University].

* Espino, C. M., Lewis, C. M., Ortiz, S., Dalal, M. S., Garlapalli, S., Wells, K. M., O’Neil, D. A., Wilkinson, K. A., & Griffith, T. N. (2022a). NaV1.1 is essential for proprioceptive signaling and motor behaviors (p. 2022.05.05.490851). bioRxiv.

Espino, C. M., Lewis, C. M., Ortiz, S., Dalal, M. S., Garlapalli, S., Wells, K. M., O’Neil, D. A., Wilkinson, K. A., & Griffith, T. N. (2022b). NaV1.1 is essential for proprioceptive signaling and motor behaviors. eLife, 11, e79917.

* Griffith, T. N., Docter, T. A., & Lumpkin, E. A. (2019a). Tetrodotoxin-sensitive sodium channels mediate action potential firing and excitability in menthol-sensitive Vglut3-lineage sensory neurons (p. 670620). bioRxiv.

Griffith, T. N., Docter, T. A., & Lumpkin, E. A. (2019b). Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons. The Journal of Neuroscience, 39(36), 7086–7101.

* Griswold, J. M., Bonilla-Quintana, M., Pepper, R., Lee, C. T., Raychaudhuri, S., Ma, S., Gan, Q., Syed, S., Zhu, C., Bell, M., Suga, M., Yamaguchi, Y., Chéreau, R., Nägerl, U. V., Knott, G., Rangamani, P., & Watanabe, S. (2023). Membrane mechanics dictate axonal morphology and function (p. 2023.07.20.549958). bioRxiv.

+ Hirata Miyasaki, E. (2022). Deep and Fast High-Resolution 3D Microscopy [UC Santa Cruz]. ProQuest.

+ Kusick, G. F. (2022). Transient docking of synaptic vesicles [Johns Hopkins University].

Kusick, G. F., Chin, M., Raychaudhuri, S., Lippmann, K., Adula, K. P., Hujber, E. J., Vu, T., Davis, M. W., Jorgensen, E. M., & Watanabe, S. (2020). Synaptic vesicles transiently dock to refill release sites. Nature Neuroscience, 23, 1329–1338.

# Lee, Y. il, & Rimer, M. (2020). Wesley J. Thompson (1947–2019). Frontiers in Molecular Neuroscience, 13.

Li, S., Raychaudhuri, S., Lee, S. A., Brockmann, M. M., Wang, J., Kusick, G., Prater, C., Syed, S., Falahati, H., Ramos, R., Bartol, T. M., Hosy, E., & Watanabe, S. (2021). Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. Nature Communications, 12, 677.

* Li, S., Raychaudhuri, S., Lee, S. A., Wang, J., Kusick, G., Prater, C., Syed, S., Falahati, H., Ramos, R., Bartol, T. M., Hosy, E., & Watanabe, S. (2020). Release sites are positioned to activate NMDA receptors. bioRxiv.

* Mali, S. S., Silva, R., Gong, Z., Cronce, M., Vo, U., Vuong, C., Moayedi, Y., Cox, J. S., & Bautista, D. M. (2024). SARS-CoV-2 papain-like protease activates nociceptors to drive sneeze and pain (p. 2024.01.10.575114). bioRxiv.

# Nishimura, N. (2022). Navigating neurophotonics, words of wisdom: An interview with Professor David Kleinfeld. Neurophotonics, 9(1), 010401.

Ralowicz, A. J., Hokeness, S., & Hoppa, M. B. (2024). Frequency of spontaneous neurotransmission at individual boutons corresponds to the size of the readily releasable pool of vesicles. Journal of Neuroscience.

+ Ramos, R. A. (2022). Synaptic Plasticity Governs the Specificity and Generalization of CTA Memory [Dissertation, Brandeis University].

Robert, V., Therreau, L., Davatolhagh, M. F., Bernardo-Garcia, F. J., Clements, K. N., Chevaleyre, V., & Piskorowski, R. A. (2020). The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation. Journal of General Physiology, 152(4).

Sáez, J. C. (2024). Michael V. L. Bennett (1931 to 2023): A world-renowned authority in the field of electrical synapses in the nervous system. Proceedings of the National Academy of Sciences, 121(10), e2401039121.

Schweikert, L. E., Bagge, L. E., Naughton, L. F., Bolin, J. R., Wheeler, B. R., Grace, M. S., Bracken-Grissom, H. D., & Johnsen, S. (2023). Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change. Nature Communications, 14, 4642.

# The people behind the papers – Carla Argañaraz, Tamara Adjimann and Mariano Soiza-Reilly. (2022). Development, 149(24), dev201521.

+ Vu, T. N. (2021). Machinery of Synaptic Vesicle Docking [Dissertation, University of Utah].

* Yin, C., Morita, T., & Parrish, J. Z. (2023). A cell atlas of the larval Aedes aegypti ventral nerve cord (p. 2023.09.08.556941). bioRxiv.

Yin, C., Morita, T., & Parrish, J. Z. (2024). A cell atlas of the larval Aedes aegypti ventral nerve cord. Neural Development, 19(1), 2.